

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Cake Build

Add #addin Cake.GitVersioning to the top of your Cake Build script. See here [https://github.com/dotnet/Nerdbank.GitVersioning/wiki/GitVersioningAliases] for usage. See here [https://github.com/dotnet/Nerdbank.GitVersioning/wiki/VersionOracle] for the VersionOracle usage.

Example

Task("GetVersion")
 .Does(() =>
{
 Information(GitVersioningGetVersion().SemVer2)
});

Cloud build support

Nerdbank.GitVersioning implicitly supports all cloud build services and CI
server software because it simply uses git itself and integrates naturally
in MSBuild, gulp and other build scripts.

Requirements

	Your CI build should be configured to actually clone the git repo rather than
download sources (i.e. the ‘.git’ folder is required).

	Do not enable any ‘shallow clone’ option on your CI build, as that erases
git history that is required for accurate version calculation.

GitHub Actions

In GitHub Actions, actions/checkout@v1 checks out a deep clone, which is great.
But actions/checkout@v2 checks out a shallow clone by default, so you’ll have to tell it to perform a deep clone:

- uses: actions/checkout@v2
 with:
 fetch-depth: 0 # avoid shallow clone so nbgv can do its work.

Azure Pipelines

Azure Pipelines behavior has changed [https://github.com/MicrosoftDocs/azure-devops-yaml-schema/issues/32] for new pipelines
such that build agents now default to creating shallow clones.
You can defeat this, thereby forcing a full history clone by adding this to the top of your steps list:

steps:
- checkout: self
 fetchDepth: 0

In particular, setting fetchDepth: 0 will cause Azure Pipelines to not do shallow clones.

See this example change [https://github.com/AArnott/Library.Template/commit/5d14d2cecbb3fd3caa6a421da1525d8480baef8b].

Read more about this and how to configure shallow cloning when not using YAML files in Microsoft documentation [https://learn.microsoft.com/azure/devops/pipelines/repos/azure-repos-git?view=azure-devops&tabs=yaml#shallow-fetch].

Optional features

By specifying certain cloudBuild options in your version.json file,
you can activate features for some cloud build systems, as follows:

Automatically match cloud build numbers to your git version

Cloud builds tend to associate some calendar date or monotonically increasing
build number to each build. These build numbers are not very informative, if at all.
Instead, Nerdbank.GitVersioning can automatically set your cloud build’s
build number to equal the semver version calculated during your build.

Enable this feature by setting the cloudBuild.buildNumber.enabled field
in your version.json file to true, as shown below:

{
 "version": "1.0",
 "cloudBuild": {
 "buildNumber": {
 "enabled": true
 }
 }
}

When any cloud build starts, a build number is initially generated by the CI server until
the build itself overrides it as this option will cause it to do. If a build aborts before
the build reassigns the build number, it will remain at the cloud assigned build number.
This can show up in your build history with some failed builds having a different versioning
scheme than passing or some other failed builds.

When you enable this feature, consider whether this will cause the generated build numbers
to overlap with those generated by the cloud build previously or in the future.
For example, AppVeyor defaults to assigning build numbers with a 1.0.x notation where x
increases. If your version.json file sets your version to “1.0”, the generated build numbers
can overlap, making AppVeyor fail builds due to a non-unique number. To avoid this,
make sure that your CI build creates initial build numbers that do not overlap with those
produced by semantic versioning. For instance, you can set your appveyor build’s version
to 1.1000 or 50.0 so that your regular semantic version build numbers are in an entirely unique
range.

Set special build variables for use in subsequent build steps

| Build variable | MSBuild property | Sample value
| — | — | — |
| GitAssemblyInformationalVersion | AssemblyInformationalVersion | 1.3.1+g15e1898f47
| GitBuildVersion | BuildVersion | 1.3.1.57621
| GitBuildVersionSimple | BuildVersionSimple | 1.3.1

This means you can use these variables in subsequent steps in your cloud build
such as publishing artifacts, so that your richer version information can be
expressed in the publish location or artifact name.

This feature is enabled by default via the cloudBuild.setVersionVariables field
in your version.json file, which defaults as shown below:

{
 "version": "1.0",
 "cloudBuild": {
 "setVersionVariables": true // the default value
 }
}

There are many more MSBuild variables that the build will set within the build. To make all these available as cloud variables (prefixed with NBGV_), you can set the cloudBuild.setAllVariables field to true:

{
 "version": "1.0",
 "cloudBuild": {
 "setVersionVariables": true,
 "setAllVariables": true
 }
}

Setting both of these fields to true means that a few variables will be defined in the cloud build server twice – one set with the names in the table above and the other (full) set using the NBGV_ prefix.

Set cloud build variables only once in a build

While each individual MSBuild project has its own version computed, the versions across projects are usually the same so long as you have one version.json file at the root of your repo. If you choose to enable setting of cloud build variables in that root version.json file, each project that builds will take a turn setting those cloud build variables. This is perhaps more work than is necessary, and when some projects compute versions differently it can lead to inconsistently defined cloud build variables, based on non-deterministic build ordering of your projects.

You can reduce log message noise and control for non-deterministic cloud build variables by disabling all the settings under the cloudBuild options in your root version.json file (including disabling default behavior):

{
 "version": "1.0",
 "cloudBuild": {
 "setVersionVariables": false // override the default value of true
 }
}

Two options are described below to set the cloud build number and variables just once in your build.

Set the cloud build number as a build step

The nbgv CLI tool can be used to set the cloud build number and variables. Your CI build script should include these two commands:

dotnet tool install --tool-path . nbgv
.\nbgv cloud

The above will set just the cloud build number, but switches you can add to the nbgv cloud command will cause other build variables to also be set.

See a working sample in a VSTS YAML file [https://github.com/Humanizr/Humanizer/blob/11bd9fd99c151f2e84eb9d4fa082a6c077504c9f/azure-pipelines.yml#L21-L29].

https://github.com/Humanizr/Humanizer/blob/11bd9fd99c151f2e84eb9d4fa082a6c077504c9f/azure-pipelines.yml#L21-L29

Set them from just one project

After ensuring that your root version.json file does not set cloudBuild.buildNumber.enabled=true, define an additional version.json file inside just one project directory that inherits from the base one, like this:

{
 "inherit": true,
 "cloudBuild": {
 "buildNumber": {
 "enabled": true
 },
 "setVersionVariables": true,
 "setAllVariables": true
 }
}

CI Server specific configurations

GitHub Actions (v2)

We define a GitHub Action that installs the nbgv CLI tool, provides version data as action outputs, and optionally sets environment variables.
Check out nerdbank-gitversioning on the GitHub Actions marketplace [https://github.com/marketplace/actions/nerdbank-gitversioning].

TeamCity

TeamCity does not expose the build branch by default as an environment variable. This can be exposed by
adding an environment variable called BUILD_GIT_BRANCH with the value of %teamcity.build.vcs.branch.<vcsid>% where <vcsid> is
the root id described on the TeamCity VCS roots page. Details on this variable can be found on the
TeamCity docs [https://confluence.jetbrains.com/display/TCD8/Predefined+Build+Parameters].

Docker build

When building inside a docker container, special considerations may apply:

	Make sure the container has access to the entire repo, including the .git directory.

	Certain environment variables from the CI system may need to be exposed to the container.
When a CI system checks out a ‘detached head’, computing the version relies on environment variables to know which ‘branch’ was checked out, among other things.
You can look up the specific environment variables that are necessary for your particular CI service by looking for their names in the src/NerdBank.GitVersioning/CloudBuildServices directory of this repo.
For example these lines [https://github.com/dotnet/Nerdbank.GitVersioning/blob/dd4dff99c5c44634d9041dde7a2ee104db821a10/src/NerdBank.GitVersioning/CloudBuildServices/VisualStudioTeamServices.cs#L24-L26] identify the two environment variables that are required for an Azure Pipelines CI system.
When using docker run yourself in your build script, you can add --env BUILD_SOURCEBRANCH --env SYSTEM_TEAMPROJECTID to your command line to pass-through those environment variables to your container.

dotnet CLI

The dotnet CLI works very much like full MSBuild. Just use dotnet build instead of msbuild.exe.

Check out our nbgv .NET Core CLI tool to install Nerdbank.GitVersioning and maintain your repos/projects more easily.

DNX never supported extensible versioning systems [https://github.com/aspnet/dnx/issues/3178]. But DNX is dead now, so you probably don’t care.

.NET support

Nerdbank.GitVersioning offers first class version stamping support for .NET assemblies.

Assembly version generation

During the build it adds source code such as this to your compilation:

[assembly: System.Reflection.AssemblyVersion("1.0")]
[assembly: System.Reflection.AssemblyFileVersion("1.0.24.15136")]
[assembly: System.Reflection.AssemblyInformationalVersion("1.0.24-alpha+g9a7eb6c819")]

	The first and second integer components of the versions above come from the
version file.

	The third integer component of the version here is the height of your git history up to
that point, such that it reliably increases with each release.

	The fourth component (when present) is the first two bytes of the git commit ID, encoded as an integer. This number will appear essentially random, and is not useful in sorting versions. It is useful when you have two branches in git history that have exactly the same major.minor.height version information in order to distinguish which commit it is.

	The -alpha tag also comes from the version file and indicates this is an
unstable version.

	The -g9a7eb6c819 tag is the concatenation of -g and the git commit ID that was built.

This class is also injected into your project at build time:

internal sealed partial class ThisAssembly {
 internal const string AssemblyVersion = "1.0";
 internal const string AssemblyFileVersion = "1.0.24.15136";
 internal const string AssemblyInformationalVersion = "1.0.24-alpha+g9a7eb6c819";
 internal const string AssemblyName = "Microsoft.VisualStudio.Validation";
 internal const string PublicKey = @"0024000004800000940000...reallylongkey..2342394234982734928";
 internal const string PublicKeyToken = "b03f5f7f11d50a3a";
 internal const string AssemblyTitle = "Microsoft.VisualStudio.Validation";
 internal const string AssemblyConfiguration = "Debug";
 internal const string RootNamespace = "Microsoft";
}

This allows you to actually write source code that can refer to the exact build
number your assembly will be assigned.

Gulp support

You can invoke Nerdbank.GitVersioning from a gulp task to get
version information and even to automatically stamp your NPM packages.

The following gulp script will update your package.json file’s version
property with the package version to build.

var gulp = require('gulp');
var nbgv = require('nerdbank-gitversioning')

gulp.task('default', function() {
 return nbgv.setPackageVersion();
});

The recommended pattern is to create your NPM package from another directory
than your source directory so that the package.json can be version-stamped
without requiring a change to your source files. If you have a many files to copy
or don’t plan to commit changes, see continuous integration below.

In your checked-in version of package.json, set your version property to
0.0.0-placeholder:

{
 "name": "your-package",
 "version": "0.0.0-placeholder",
}

Then write a gulp script that copies your files to package into another folder
and stamps the version into that folder.

const outDir = 'out';

const cp = require('child_process');
function execAsync(command, options) {
 return new Promise((resolve, reject) => cp.exec(command, options, (error, stdout, stderr) => {
 if (error) {
 reject(error);
 }
 else {
 resolve({ stdout: stdout, stderr: stderr });
 }
 }));
}

gulp.task('copyPackageContents', function() {
 return gulp
 .src([
 'package.json',
 'README.md',
 '*.js'
])
 .pipe(gulp.dest(outDir));
});

gulp.task('setPackageVersion', ['copyPackageContents'], function() {
 var nbgv = require(`./${outDir}`);
 // Stamp the copy of the NPM package in outDir, but use this
 // source directory as a reference for calculating the git version.
 return nbgv.setPackageVersion(outDir, '.');
});

gulp.task('package', ['setPackageVersion'], function() {
 return execAsync(`npm pack "${path.join(__dirname, outDir)}"`, { cwd: outDir });
});

gulp.task('default', ['package'], function() {
});

When you run your gulp script, the out directory will contain a package
with a package.json file with a specific version field, such as:

{
 "name": "nbgv-trial",
 "version": "1.0.15-g0b1ed99829",
}

Continuous integration

If you do not plan to commit changes or have a lot of files you’d need to copy,
install of the instructions above you can instead ignore changes and simply build.
If you use package-lock.json or npm-shrinkwrap.json and use caching on your CI server,
you should rename those files prior to calling nbgv.setPackageVersion() as shown below.
If you do not rename the file, nbgv.setPackageVersion() may inadvertently modify the lockfile
and invalidate the cache, thus causing a cache miss on subsequent builds.

In your gulpfile.js:

const fs = require('fs');
const util = require('util');

gulp.task('setPackageVersion', function() {
 const renameAsync = util.promisify(fs.rename);

 return renameAsync('package-lock.json', 'package-lock.backup').then(function() {
 return nbgv.setPackageVersion().finally(function() {
 return renameAsync('package-lock.backup', 'package-lock.json');
 });
 });
});

In your CI configuration, you can then safely use package-lock.json or npm-shrinkwrap.json
as part of the cache key, as shown in the Azure Pipelines example below:

variables:
 npm_config_cache: $(Pipeline.Workspace)/.npm

steps:
- task: CacheBeta@0
 inputs:
 key: $(Agent.OS) | npm | package-lock.json
 path: $(npm_config_cache)

- script: npm ci

Migrating to Nerdbank.GitVersioning

Dealing with legacy version.txt or version.json files

When you already have a version.txt or version.json file in your repo and want to use Nerdbank.GitVersioning,
you may find that your build breaks when NB.GV tries to parse your version.txt or version.json file(s).

Any such version.txt or version.json files in project directories with NB.GV installed, or any parent directory up to the repo root, must be removed in a commit prior to the commit that defines the new NB.GV-compliant version.json file. This will ensure that NB.GV will not discover the legacy files and try to parse them.

It is important that you maintain that clean break where no commit with a NB.GV version.json file has an immediate parent commit with a legacy version file. A merge commit (like a pull request with your migration changes would create) will defeat your work by having the new version.json file and an immediate parent with the version.txt file (the one from your base branch). It is therefore mandatory that if you have such a legacy file, that when you’re done validating the migration that you directly push your 2+ commits to your branch rather than complete a pull request. If your team’s policy is to use pull requests, you can create one for review, but complete it by pushing the commits directly rather than letting the git service create the merge commit for you by completing the pull request. If the push is rejected because it is not a fast-forward merge, rebase your changes since a local merge commit would similarly defeat your efforts.

Also note that any other open pull requests that are based on a commit from before your changes may also introduce the problematic merge commit by providing a direct parent commit path from the new version.json file to the legacy one. These open PRs must be squashed when completed or rebased.

Maintaining an incrementing version number

When defining your new version.json file, you should set the version to be same major.minor version that you used before or higher.
If you are matching the prior major.minor version and need the build height integer (usually the 3rd integer) of your version to start higher than the last version from your legacy mechanism, set the "buildNumberOffset" field in the version.json file to be equal to or greater than the 3rd integer in the old version. Note that the first build height will be one more than the number you set here, since the commit with your changes adds to the offset you specify.

For example, suppose your last release was of version 1.2.4. When you switch to NB.GV, you may use a version.json file with this content:

{
 "version": "1.2",
 "buildNumberOffset": 4
}

After commiting this change, the first version NB.GV will assign to your build is 1.2.5.

When you later want to ship v1.3, remove the second field so that the 3rd integer resets:

{
 "version": "1.3"
}

This will make your first 1.3 build be versioned as 1.3.1.

MSBuild

Installing the Nerdbank.GitVersioning package from NuGet into your MSBuild-based projects is the recommended way to add version information to your MSBuild project outputs including assemblies, native dll’s, and packages.

If you want the package to affect all the projects in your repo, and you use PackageReference (rather than packages.config),
you can add this to a repo-level Directory.Build.props file:

<ItemGroup>
 <PackageReference Include="Nerdbank.GitVersioning"
 Version="(latest-version-here)"
 PrivateAssets="all"
 Condition="!Exists('packages.config')" />
</ItemGroup>

The condition prevents the PackageReference from impacting any packages.config-based projects
such as vcxproj that may be in your repo.
Such projects will require individual installation of the Nerdbank.GitVersioning nuget package
using the NuGet Package Manager in Visual Studio.

Public releases

By default, each build of a Nuget package will include the git commit ID.
When you are preparing a release (whether a stable or unstable prerelease),
you may build setting the PublicRelease global property to true
in order to avoid the git commit ID being included in the NuGet package version.

From the command line, building a release version might look like this:

msbuild /p:PublicRelease=true

Note you may consider passing this switch to any build that occurs in the
branch that you publish released NuGet packages from.
You should only build with this property set from one release branch per
major.minor version to avoid the risk of producing multiple unique NuGet
packages with a colliding version spec.

Custom build authoring

If you are writing your own MSBuild targets or properties and need to consume version information,
Nerdbank.GitVersioning is there to help.
The version information created by this package is expressed as MSBuild properties.
These properties are set by the GetBuildVersion target defined in this package.
This means any dependency you have on these properties must ensure this target has already executed.
This can be done by defining your own msbuild target like so:

<Target Name="MyPropertySetter" DependsOnTargets="GetBuildVersion">
 <PropertyGroup>
 <MyOwnProperty>My assembly version is: $(AssemblyVersion)</MyOwnProperty>
 </PropertyGroup>
</Target>

In the above example, the AssemblyVersion property, which is set by the
GetBuildVersion target defined by Nerdbank.GitVersioning, is used to define
another property.
It could also be used to define msbuild items or anything else you want.

MSBuild properties defined in GetBuildVersion

Many MSBuild properties are set by GetBuildVersion allowing you to define or redefine
properties in virtually any format you like.
The authoritative list is here [https://github.com/dotnet/Nerdbank.GitVersioning/blob/dae20a6d15f04d8161fd092c36fdf1f57c021ba1/src/Nerdbank.GitVersioning.Tasks/GetBuildVersion.cs#L300-L323] (switch to the default branch to see the current set).

Below is a snapshot of the properties with example values.
Note that the values and formats can vary depending on your version.json settings and version height.

Property | Example value
–|–
AssemblyFileVersion | 2.7.74.11627
AssemblyInformationalVersion | 2.7.74-alpha+6b2d14ba68
AssemblyVersion | 2.7.0.0
BuildingRef | refs/heads/fix299
BuildNumber | 74
BuildVersion | 2.7.74.11627
BuildVersion3Components | 2.7.74
BuildVersionNumberComponent | 74
BuildVersionSimple | 2.7.74
ChocolateyPackageVersion | 2.7.74-alpha-g6b2d14ba68
CloudBuildNumber | (empty except in cloud build)
FileVersion | 2.7.74.11627
GitCommitDateTicks | 637547960670000000
GitCommitId | 6b2d14ba6844d2152c48268a8d2c1933759e7229
GitCommitIdShort | 6b2d14ba68
GitVersionHeight | 74
MajorMinorVersion | 2.7
NPMPackageVersion | 2.7.74-alpha.g6b2d14ba68
NuGetPackageVersion | 2.7.74-alpha-g6b2d14ba68
PackageVersion | 2.7.74-alpha-g6b2d14ba68
PrereleaseVersion | -alpha
PublicRelease | False
SemVerBuildSuffix | +6b2d14ba68
Version | 2.7.74-alpha-g6b2d14ba68

Build performance

Repos with many projects or many commits between major/minor version bumps can suffer from compromised build performance due to the MSBuild task that computes the version information for each project.
You can assess the impact that Nerdbank.GitVersioning has on your build time by running a build with the -clp:PerformanceSummary switch and look for the Nerdbank.GitVersioning.Tasks.GetBuildVersion task.

Reducing GetBuildVersion invocations

If the GetBuildVersion task is running many times, yet you have just one (or a few) version.json files in your repository, you can reduce this task to being called just once per version.json file to significantly improve build performance.
To do this, drop a Directory.Build.props file in the same directory as your version.json file(s) with this content:

<Project>
 <PropertyGroup>
 <GitVersionBaseDirectory>$(MSBuildThisFileDirectory)</GitVersionBaseDirectory>
 </PropertyGroup>
</Project>

This MSBuild property instructs all projects in or under that directory to share a computed version based on that directory rather than their individual project directories.
Check the impact of this change by re-running MSBuild with the -clp:PerformanceSummary switch as described above.

If you still see many invocations, you may have a build that sets global properties on P2P references.
Investigate this using the MSBuild /bl switch and view the log with the excellent MSBuild Structured Log Viewer [https://msbuildlog.com] tool.
Using that tool, search for $task GetBuildVersion and look at the global properties passed to the special Nerdbank.GitVersioning.Inner.targets project, as shown:

[[image: _images/globalproperties_log.png]MSBuild Structure Logger screenshot

Compare the set of global properties for each Nerdbank.GitVersioning.Inner.targets project to identify which properties are unique each time.
Add the names of the unique properties to the Directory.Build.props file:

<Project>
 <PropertyGroup>
 <GitVersionBaseDirectory>$(MSBuildThisFileDirectory)</GitVersionBaseDirectory>
 </PropertyGroup>
 <ItemGroup>
 <NBGV_GlobalPropertiesToRemove Include="ChangingProperty1" />
 <NBGV_GlobalPropertiesToRemove Include="ChangingProperty2" />
 </ItemGroup>
</Project>

That should get you down to one invocation of the GetBuildVersion task per version.json file in your repo.

Using the nbgv .NET Core CLI tool

Perform a one-time install of the nbgv tool using the following dotnet CLI command:

dotnet tool install -g nbgv

You may then use the nbgv tool to install Nerdbank.GitVersioning into your repos, as well as query and update version information for your repos and projects.

Install Nerdbank.GitVersioning into your repo using this command from within your repo:

nbgv install

This will create your initial version.json file.
It will also add/modify your Directory.Build.props file in the root of your repo to add the PackageReference to the latest Nerdbank.GitVersioning package available on nuget.org.

CI Builds

If scripting for running in a CI build where global impact from installing a tool is undesirable, you can localize the tool installation:

dotnet tool install --tool-path my/path nbgv

Ensure your custom path is outside of your git repository, as the nbgv tool doesn’t support uncommited changes

At this point you can launch the tool using ./nbgv in your build script.

Preparing a release

The prepare-release command automates the task of branching off the main development branch to stabilize for an upcoming release. It is optimized for the following workflow:

	There is a branch (typically master) where main development happens.
This branch typically builds with some -prerelease tag.
It may be a “public release” for early prereleases.

	To stabilize for and/or ship a release, a branch named after the version to be shipped is created.
This branch may include a -prerelease tag, typically a more advanced tag than any found in master. For example, if master builds -alpha then the stabilization branch would build -beta or -rc.

	Each release branch may be periodically merged into the next newer release branch or master so that hot fixes also ship in the next major release.

The prepare-release command supports this working model by taking care of
creating the release branch and updating version.json on both branches.

To prepare a release, first ensure there is no uncommited changes in your repository then run:

nbgv prepare-release

This will:

	Read version.json to ascertain the version under development,
and the naming convention of release branches.

	Create a new release branch for that version. If the version on the current
branch is 1.2-beta and the release branch naming convention is release/v{version},
a release branch named release/v1.2 will be created.

	Remove the prerelease tag from version.json on the release branch.
Optionally (if an argument is passed to the command) a new prerelease tag is used to replace the old one.

	Back on the original branch, increment the version as specified in version.json.
By default, prepare-release will increment the minor version and set the
prerelease tag to alpha. If the version has multiple prerelease tags
(separated by ‘.’), only the first tag will be updated.
In the above example, the version on the main branch would be set to 1.3-alpha.

	Merge the release branch back to the main branch, resolving the conflict in version.json.
This avoids having to resolve the conflict when merging the branch at a later
time.

You can optionally include a prerelease tag on the release branch, e.g. when
you want to do some stabilization first. This can be achieved by passing a
tag to the command, e.g.:

nbgv prepare-release rc

Note: When the current branch is already the release branch for the current version,
no new branch will be created. Instead the tool will just update the version
in the current branch by replacing or removing the prerelease tag.

Customizing the next version

By default, the next version of the main branch is determined from the current
version and the versionIncrement setting in version.json.
To customize this behaviour, you can either explicitly set the next version
or override the version increment setting.

To explicitly set the next version, run:

nbgv prepare-release --nextVersion 2.0

To override the versionIncrement setting from version.json, run:

nbgv prepare-release --versionIncrement Major

Note: The parameters nextVersion and versionIncrement cannot
be combined.

Customizing the behaviour of prepare-release

The behaviour of the prepare-release command can be customized in
version.json:

{
 "version": "1.0",
 "release": {
 "branchName" : "release/v{version}",
 "versionIncrement" : "minor",
 "firstUnstableTag" : "alpha"
 }
}

Property	Default value	Description
——————	———————-	———–
branchName	v{version}	Defines the format of release branch names. The value must include a {version} placeholder.
versionIncrement	minor	Specifies which part of the version on the current branch is incremented when preparing a release. Allowed values are major, minor and build.
firstUnstableTag	alpha	Specified the unstable tag to use for the main branch.

Customizing the prepare-release output format

By default, the prepare-release command writes information about created and updated branches to the console as text.
Alternatively the information can be written to the output as json.
The output format to use can be set using the --format command line parameter.

For example, running the following command on master

nbgv prepare-release --format json

will generate output similar to this:

{
 "CurrentBranch": {
 "Name": "master",
 "Commit": "5a7487098ac1be1ceb4dbf72d862539cf0b0c27a",
 "Version": "1.7-alpha"
 },
 "NewBranch": {
 "Name": "v1.7",
 "Commit": "b2f164675ffe891b66b601c00efc4343581fc8a5",
 "Version": "1.7"
 }
}

The JSON object has two properties:

	CurrentBranch provides information about the branch that prepare-release was started on (typically master)

	NewBranch provides information about the new branch created by the command.

For each branch, the following properties are provided:

	Name: The name of the branch

	Commit: The id of the latest commit on that branch

	Version: The version configured in that branch’s version.json

Note: When the current branch is already the release branch for the current version, no new branch will be created.
In that case, the NewBranch property will be null.

Creating a version tag

The tag command automates the task of tagging a commit with a version.

To create a version tag, run:

nbgv tag

This will:

	Read version.json to ascertain the version under development, and the naming convention of tag names.

	Create a new tag for that version.

You can optionally include a version or commit id to create a new tag for an older version/commit, e.g.:

nbgv tag 1.0.0

Customizing the behaviour of tag

The behaviour of the tag command can be customized in version.json:

{
 "version": "1.0",
 "release": {
 "tagName" : "v{version}"
 }
}

Property	Default value	Description
———-	—————	————————————————————————————————-
tagName	v{version}	Defines the format of tag names. Format must include a placeholder ‘{version}’ for the version.

Learn more

There are several more sub-commands and switches to each to help you build and maintain your projects, find a commit that built a particular version later on, create tags, etc.

Use the --help switch on the nbgv command or one of its sub-commands to learn about the sub-commands available and how to use them. For example, this is the basic usage help text:

nbgv --help
usage: nbgv <command> [<args>]

 install Prepares a project to have version stamps applied
 using Nerdbank.GitVersioning.
 get-version Gets the version information for a project.
 set-version Updates the version stamp that is applied to a
 project.
 tag Creates a git tag to mark a version.
 get-commits Gets the commit(s) that match a given version.
 cloud Communicates with the ambient cloud build to set the
 build number and/or other cloud build variables.
 prepare-release Prepares a release by creating a release branch for
 the current version and adjusting the version on the
 current branch.

Node support

Acquisition

See NPM acquisition.

Acquiring version information

var nbgv = require('nerdbank-gitversioning')
nbgv.getVersion()
 .then(r => console.log(r))
 .catch(e => console.error(e));

Will print out a JavaScript object resembling this:

{ "version": "0.0.1.24231",
 "simpleVersion": "0.0.1",
 "majorMinorVersion": "0.0",
 "commitId": "a75ed9bf5388d6a6c89ea7377b2bc0217523c12d",
 "commitIdShort": "a75ed9bf53",
 "versionHeight": "1",
 "semVer1": "0.0.1-ga75ed9bf53",
 "semVer2": "0.0.1+ga75ed9bf53" }

Build integration

Check out our instructions for gulp.

Nerdbank.GitVersioning installation via NPM

Install the nerdbank-gitversioning package:

npm install nerdbank-gitversioning --save-dev

Next steps

You must also create a version.json file in your repo.
Learn more about how Node and your NPM packages can be stamped with version information.

Nerdbank.GitVersioning installation via NuGet

Install the Nerdbank.GitVersioning package using the Visual Studio
NuGet Package Manager GUI, or the NuGet Package Manager Console:

Install-Package Nerdbank.GitVersioning

If in a project that uses PackageReference for this package reference, you should manually add
PrivateAssets="all" to the PackageReference xml element to workaround
this issue [https://github.com/dotnet/Nerdbank.GitVersioning/issues/122].

After installing this NuGet package, you may need to configure the version generation logic
in order for it to work properly.

We recommend installing the nbgv tool using dotnet tool install -g nbgv.
Then use nbgv install to add the package reference and version.json file to your repo.
But you can simply add the package reference yourself, and create the version.json in your repo
with content conforming to this doc.

The scripts will look for the presence of a version.json or version.txt file.
If one already exists, nothing happens. If the version file does not exist,
the script looks in your project for the Properties\AssemblyInfo.cs file and attempts
to read the Major.Minor version number from
the AssemblyVersion attribute. It then generates a version.json file using the Major.Minor
that was parsed so that your assembly will build with the same AssemblyVersion as before,
which preserves backwards compatibility. Finally, it will remove the various version-related
assembly attributes from AssemblyInfo.cs.

If you did not use the scripts to configure the package, you may find that you get a
compilation failure because of multiple definitions of certain attributes such as
AssemblyVersionAttribute.
You should resolve these compilation errors by removing these attributes from your own
source code, as commonly found in your Properties\AssemblyInfo.cs file:

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]
[assembly: AssemblyInformationalVersion("1.0.0-dev")]

If you are using the new VS 2019 .NET Core/Standard projects (or otherwise using the .NET SDK project type)
you won’t see these attributes in your AssemblyInfo.cs file but you may still get compiler errors
due to duplicate attributes. In that case, a Rebuild of your project should resolve
the issue [https://github.com/dotnet/Nerdbank.GitVersioning/issues/121].

This NuGet package creates these attributes at build time based on version information
found in your version.json file and your git repo’s HEAD position.

When the package is installed, a version.json file is created in your project directory
(for packages.config clients). This ensures backwards compatibility where the installation of
this package will not cause the assembly version of the project to change. If you would
like the same version number to be applied to all projects in the repo, then you may move
the version.json file to the root directory of your git repo.

Note: After first installing the package, you need to commit the version file so that
it will be picked up during the build’s version generation. If you build prior to committing,
the version number produced will be 0.0.x.

Next steps

You must also create a version.json file in your repo.
Learn more about how .NET projects are stamped with version information.

NuProj support

When building NuGet packages with NuProj, you can install the Nerdbank.GitVersioning
NuGet package into your NuProj project itself to automatically start versioning your
own packages to match the git versioning rules specified in your version.json file.

Installing Nerdbank.GitVersioning into your NuProj project

First, you should make sure that your NuProj follows these build authoring
guidelines [https://github.com/nuproj/nuproj/blob/master/docs/Build].

Add Nerdbank.GitVersioning as a package to your NuProj’s project.json file.
It may end up looking something like this:

{
 "dependencies": {
 "Nerdbank.GitVersioning": "1.4.41",
 "NuProj": "0.10.48-beta-gea4a31bbc5"
 },
 "frameworks": {
 "net451": { }
 },
 "runtimes": {
 "win": { }
 }
}

Additional steps

You are encouraged to remove any definition of a Version property,
since it will be set by the build.

<Version>1.0.0-removeThisWholeLine</Version>

Path filters

Problem

Some repositories may contain more than one project. This is sometimes referred to as a mono repo (as opposed to having a repo for each project - many repo). Imagine a repository structured as:

	/

	Foo/

	version.json => {"version": "1.0"}

	Bar/

	version.json => {"version": "2.1"}

	Quux/

	version.json => {"version": "4.3"}

	README.md

With GitVersioning’s default configuration, a commit to a given project’s subtree will result in the version height bumping for all projects in the repository. This is typically not desirable. Intuitively, a commit to Bar should only cause a version bump for Bar, and not Foo or Quux.

Solution

Path filters provide a way to filter which subtrees in the repository affect version height. Imagine the version.json files had a pathFilter property:

{
 "version": "1.0",
 "pathFilters": ["."]
}

With this single path filter of ".", the version height for this project would only bump when a commit was made within that subtree. Now imagine all projects in the original example have this value for pathFilters. Consider the following commits to the repository, and note their effect on the version height for each project:

Paths changed	Result
—————————————-	————————————————————————–
/README.md	Commit does not affect any project. No versions change.
/Bar/Program.cs/Quux/Quux.csproj	Commit affects both Bar and Quux. Their patch versions will bump by 1.
/Bar/MyClass.cs	Commit affects only Bar. Bar’s patch version will bump by 1.

 Public vs. stable releases

Public vs. stable releases

There is sometimes confusion around Nerdbank.GitVersioning’s concept of a “public release”
and SemVer/NuGet’s concept of a “stable release”.

Let’s start with a clear distinction: public and stable releases are (mostly) orthogonal:

	SemVer defines a prerelease [https://semver.org/#spec-item-9] as a version with any hyphenated suffix (e.g. -prerelease).

	Nerdbank.GitVersioning uses the term “public release” to connotate a version suited for public consumption because it participates in linear history. A public release does not include the -gc0ffee commit hash.

SemVer pre-releases

From semver.org:

A pre-release version indicates that the version is unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version.

The unstable nature of a product might be in functional resilience, or that its API isn’t finalized, or lack of adequate testing.
Any and all of these are based on the assessment of the software engineers responsible for the project.

Like the version number, the -prerelease tag (if there is one) is recorded in a git source tree for Nerdbank.GitVersioning to use when building.
A given commit in a repo represents software that builds v1.2 of a product or v1.2-beta of a product, depending on how its owner(s) felt about the commit at the time they authored it.
When a branch becomes stable, the -prerelease tag can be removed by adding a commit to the branch that strips the tag.

There is no way to remove the -prerelease tag from an existing commit that has a -prerelease tag expressed in its committed version.json.
To remove the -prerelease, the version.json file must be changed to remove it.
Committing this change communicates to everyone looking at the repo that this software is stable.

The natural evolution of a product usually includes entering and exiting a -prerelease stage many times, but within a branded release (usually recognized by an intentional version number like “1.2”) the progression usually transitions only one direction: from -prerelease to stable quality.
For example, an anticipated version 1.2 might first be released to the public as 1.2-beta before releasing as 1.2 (without the -beta suffix).
If the product is undergoing significant changes that warrant downgrading the stability rating to pre-release quality, the version number tends to be incremented at the same time.
So a 1.2 product’s subsequent release might appear as 1.3-beta or 2.0-beta.
But for a particularly stable product, it’s possible for releases to remain stable from one release (1.2) to the next (1.3) without ever publishing a pre-release version.

Tip: To aid in the common workflow of stabilizing for a release including branching and updating version.json, and mitigating merge conflicts in that file, we have the nbgv prepare-release [https://github.com/dotnet/Nerdbank.GitVersioning/blob/master/doc/nbgv-cli.md#preparing-a-release] command to automate the process.

In all this, to consumers of the product there is never any question regarding which of two releases is newer.
SemVer formalizes version comparisons [https://semver.org/#spec-item-11] but, in essence, the larger the number the newer it is such that there is never ambiguity between two versions.
This is what I refer to as “linear” history.
Every version is a point along a line of versions.
It’s possible to ship a servicing release “in the middle” of your line, but it’s still a line and the servicing release is not as new as your latest release.

Nerdbank.GitVersioning and public releases

The SemVer-world of linear history is a fantasy enjoyed by the outside world.
If you live in a services world and deploy constantly from one branch yet never ship packages to others, your development might even resemble this.
For those of us who actually share software packages with others, your world of software development may not resemble such “linear” history at all.
You may have many topic branches where concurrent development is occurring (even if those branches are short lived).
Or you may have servicing branches where you can patch already shipped software while you continue development of your next major version.
All these branches may not resemble anything close to what might be called “linear”.
And that’s OK. We just need tools that support our real-world development flow.
That’s what Nerdbank.GitVersioning’s “public release” flag is for. Let’s dive in.

There are traces of linear history in your repo.
Any commit in git can be formally shown to be either older or newer than any other commit belonging to the same branch, similar to any two versions in SemVer can.
Within a single branch then, you have linear history.
If you always ship from main for example, then main can act as your linear parallel to your semver-world of public releases.
To capture this, you can tell Nerdbank.GitVersioning that you ship out of main in your version.json file:

{
 "version": "1.2",
 "publicReleaseRefSpec": [
 "^refs/heads/main$"
]
}

But what exactly does this publicReleaseRefSpec property do?
It tells Nerdbank.GitVersioning which branch(es) to assume belong to your publicly visible linear history.
When building such a branch, it’s safe to build packages that have only a version number.
So building either of a couple of commits along the main branch where 1.2 is the specified version might produce a package versioned as 1.2.5 for the 5th commit and 1.2.9 for the 9th commit.

When you’re not building from a “public release” branch, Nerdbank.GitVersioning delivers on several requirements:

	Because you’re not participating in linear history, the version stamp should make this clear.

	The version should be sufficiently unique so as to guarantee that no two commits in two arbitrary branches in git can collide. This is particularly important when building packages that might be shared or expanded into a local cache no more than once based on the version.

	Even if the base of your topic branch is considered “stable”, your incomplete work in a topic branch certainly shouldn’t be considered stable or confused with something from the mainline branch, so anything built from it should be forcibly interpreted as unstable.

Nerdbank.GitVersioning accomplishes these objectives by appending a special pre-release suffix to everything built in a non-public release branch. This prerelease tag is based on the git commit ID being built.
For example if you’re building a topic branch from version 1.2 with a commit ID starting with c0ffeebeef, the SemVer-compliant version produced for that build would be 1.2-c0ffeebeef. If the version.json indicated this is -beta software, the two prerelease tags would be combined to form 1.2-beta-c0ffeebeef.

If in addition to shipping out of main you also service past releases, you might name those branches with a convention of vMajor.Minor (e.g. v1.2, v1.3) and then add the pattern to your version.json file’s publicReleaseRefSpec array:

{
 "version": "1.2",
 "publicReleaseRefSpec": [
 "^refs/heads/main$", // main releases ship from main
 "^refs/heads/v\\d+\\.\\d+$" // servicing releases ship from vX.Y branches
]
}

When you specify multiple branches as public release branches, it is very important that each of these branches have a unique version specified in the version property of the version.json file.
This guarantees that versions built from any two of these public release branches never collide in version number.
Naming most/all your public release branches after the version they build can help folks to find the right branch as well as help maintain unique versions for each branch.

In development of a topic branch, you might find a need to share packages before merging into one of these public release branches.
That’s just fine – you can share your -gc0ffeebeef suffixed packages.
This suffix will make it clear to those you share the package with that these are unofficial packages whose version do not participate in linear history and thus are not necessarily older or newer than another public release.

A commit may belong to multiple branches in git at once.
If some of those branches are “public release” branches and some are not, will building that commit result in a public release version or not?
The public release flag is determined by the ref (i.e. branch or tag) being built – not the commit.
The same commit can be built as a public release or a non-public release depending on which branch is checked out during the build.

Overriding the public release flag for a branch

The public release flag can be overridden during a build by setting the PublicRelease MSBuild property.
To force public release versioning, you can add the /p:PublicRelease=true switch to your msbuild or dotnet build command line.
To force a non-public release build, you can similarly specify /p:PublicRelease=false.

This can be useful when testing a topic branch will build successfully after merging into a stable, public release branch by forcing a local build to build as a public release.
For example suppose main builds a stable 1.2 package, and your topic branch builds 1.2-c0ffeebeef because it’s a non-public release.
In your topic branch you’ve made some package dependency changes that might have introduced a dependency on some other unstable package.
Your package manager didn’t complain because your package version was unstable anyway due to the -c0ffeebeef suffix.
But you know once you merge into main, it will be a stable package again and your package manager might complain that a stable package shouldn’t depend on a prerelease package.
You can force such warnings to show up in your topic branch by building with the /p:PublicRelease=true switch.

More on why and when git commit hashes are useful

Consider that main builds a 1.2 version, and has a version height of 10. So its package version will be 1.2.10. Now imagine a developer branches off a “fixBug” topic branch from that point and begins changing code. As part of changing and testing that code, a package is built and consumed. Note the developer may not have even committed a change yet, so the version and height is still 1.2.10. We don’t want a package version collision, so the topic branch produces a package version of 1.2.10-gc0ffee. Now both the official main version and the topic branch version can both be restored and populate the nuget cache on a machine without conflicting and causing bizarre inconsistent behaviors that boggle the mind. :)

Or, if the topic branch has committed and moved onto 1.2.11, that could still collide because main may have moved on as well, using that same version. But since the topic branch always adds -gc0ffee hash suffixes to the package version, it won’t conflict.
Also: you don’t want a topic branch to be seen as newer and better than what’s in the main branch unless the user is explicitly opting into unstable behavior, so the -gc0ffee suffix is useful because it forces the package to be seen as “unstable”. Once it merges with main, it will drop its -gc0ffee suffix, but will retain any other -prerelease tag specified in the version.json file.

 Microsoft’s (internal) quickbuild

Microsoft’s (internal) quickbuild

Nerdbank.GitVersioning supports the Microsoft-internal quickbuild/cloudbuild tool.

It works out of the box, but each project will recompute the version, which may accumulate to a significant increase in overall build time.

🚧 A future version of Nerdbank.GitVersioning will cache version information as a file so that the following instructions will be effective. 🚧

To calculate the version just once for an entire build, a few manual steps are required.

	Create this project in your repo. The suggested location is VersionGeneration/VersionGeneration.msbuildproj.

<Project Sdk="Microsoft.Build.NoTargets">
 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 <IsPackable>false</IsPackable>
 <SkipCopyBuildProduct>true</SkipCopyBuildProduct>
 <NBGV_CacheMode>VersionGenerationTarget</NBGV_CacheMode>
 </PropertyGroup>
</Project>

The TargetFramework property value is not important as no assemblies are built by this project,
but a value is nonetheless required for NuGet to be willing to consume the Nerdbank.GitVersioning package reference
(which is referenced in Directory.Build.props as described later).

	Add the SDK version to your repo-root level global.json file, if it is not already present.
The latest available version from nuget.org [https://www.nuget.org/packages/microsoft.build.notargets] is recommended.

{
 "msbuild-sdks": {
 "Microsoft.Build.NoTargets": "3.1.0"
 }
}

	Modify your repo-root level Directory.Build.props file to contain these elements:

<PropertyGroup>
 <!-- This entire repo has just one version.json file, so compute the version once and share with all projects in a large build. -->
 <GitVersionBaseDirectory>$(MSBuildThisFileDirectory)</GitVersionBaseDirectory>
</PropertyGroup>

<PropertyGroup Condition=" '$(QBuild)' == '1' ">
 <NBGV_CacheMode>MSBuildTargetCaching</NBGV_CacheMode>
 <NBGV_CachingProjectReference>$(MSBuildThisFileDirectory)VersionGeneration\VersionGeneration.msbuildproj</NBGV_CachingProjectReference>
</PropertyGroup>

<ItemGroup>
 <PackageReference Include="Nerdbank.GitVersioning" Version="3.5.*" PrivateAssets="all" />
</ItemGroup>

 version.json file

version.json file

You must define a version.json file in your project directory or some ancestor of it.
It is common to define it in the root of your git repo.

Important: Some changes to version.json are not effective until you commit the change.
Pushing your commit to a remote is not necessary.

Here is the content of a sample version.json file you may start with:

{
 "$schema": "https://raw.githubusercontent.com/dotnet/Nerdbank.GitVersioning/main/src/NerdBank.GitVersioning/version.schema.json",
 "version": "1.0-beta"
}

The $schema field is optional but highly encouraged as it causes most JSON editors
to add auto-completion and doc tips to help you author the file.

Note that the capitalization of the version.json filename must be all lower-case
when added to the git repo.

File format

The content of the version.json file is a JSON serialized object with these properties
(and more):

{
 "version": "x.y-prerelease", // required (unless the "inherit" field is set to true and a parent version.json file sets this.)
 "assemblyVersion": {
 "version": "x.y", // optional. Use when x.y for AssemblyVersionAttribute differs from the default version property.
 "precision": "revision" // optional. Use when you want a more precise assembly version than the default major.minor.
 },
 "versionHeightOffset": "zOffset", // optional. Use when you need to add/subtract a fixed value from the computed version height.
 "semVer1NumericIdentifierPadding": 4, // optional. Use when your -prerelease includes numeric identifiers and need semver1 support.
 "gitCommitIdShortFixedLength": 10, // optional. Set the commit ID abbreviation length.
 "gitCommitIdShortAutoMinimum": 0, // optional. Set to use the short commit ID abbreviation provided by the git repository.
 "nugetPackageVersion": {
 "semVer": 1 // optional. Set to either 1 or 2 to control how the NuGet package version string is generated. Default is 1.
 "precision": "build" // optional. Use when you want to use a more or less precise package version than the default major.minor.build.
 },
 "pathFilters": [
 // optional list of paths to consider when calculating version height.
],
 "publicReleaseRefSpec": [
 "^refs/heads/master$", // we release out of master
 "^refs/tags/v\\d+\\.\\d+" // we also release tags starting with vN.N
],
 "cloudBuild": {
 "setVersionVariables": true,
 "buildNumber": {
 "enabled": false,
 "includeCommitId": {
 "when": "nonPublicReleaseOnly",
 "where": "buildMetadata"
 }
 }
 },
 "release" : {
 "tagName" : "v{version}",
 "branchName" : "v{version}",
 "versionIncrement" : "minor",
 "firstUnstableTag" : "alpha"
 },
 "inherit": false // optional. Set to true in secondary version.json files used to tweak settings for subsets of projects.
}

The x and y variables are for your use to specify a version that is meaningful
to your customers. Consider using semantic versioning [https://semver.org/] for guidance.
You may optionally supply a third integer in the version (i.e. x.y.z),
in which case the git version height is specified as the fourth integer,
which only appears in certain version representations.
Alternatively, you can include the git version height in the -prerelease tag using
syntax such as: 1.2.3-beta.{height}

The optional -prerelease tag allows you to indicate that you are building prerelease software.

The publicReleaseRefSpec field causes builds out of certain branches or tags
to automatically drop the -gabc123 git commit ID suffix from the version, making it
convenient to build releases out of these refs with a friendly version number
that assumes linear versioning.

Learn more about pathFilters.

 VSIX support

VSIX support

Nerdbank.GitVersioning can automatically stamp the VSIXs you build with
the version calculated from your version.json file and git height.

Installation

	Install the Nerdbank.GitVersioning NuGet package into your VSIX-generating project.

	Open the source.extension.vsixmanifest file in a code editor
and set the PackageManifest/Metadata/Identity/@Version attribute to this
value: |%CurrentProject%;GetBuildVersion|

_static/plus.png

_static/up-pressed.png

_static/up.png

_images/globalproperties_log.png
